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ABSTRACT

Deep neural networks (DNNs) have become the gold standard for solving challenging classification problems,
especially given complex sensor inputs (e.g., images and video). While DNNs are powerful, they are also brittle,
and their inner workings are not fully understood by humans, leading to their use as “black-box” models. DNNs
often generalize poorly when provided new data sampled from slightly shifted distributions; DNNs are easily
manipulated by adversarial examples; and the decision-making process of DNNs can be difficult for humans to
interpret. To address these challenges, we propose integrating DNNs with external sources of semantic knowledge.
Large quantities of meaningful, formalized knowledge are available in knowledge graphs and other databases,
many of which are publicly obtainable. But at present, these sources are inaccessible to deep neural methods,
which can only exploit patterns in the signals they are given to classify. In this work, we conduct experiments
on the ADE20K dataset, using scene classification as an example task where combining DNNs with external
knowledge graphs can result in more robust and explainable models. We align the atomic concepts present in
ADE20K (i.e., objects) to WordNet, a hierarchically-organized lexical database. Using this knowledge graph, we
expand the concept categories which can be identified in ADE20K and relate these concepts in a hierarchical
manner. The neural architecture we present performs scene classification using these concepts, illuminating a
path toward DNNs which can efficiently exploit high-level knowledge in place of excessive quantities of direct
sensory input. We hypothesize and experimentally validate that incorporating background knowledge via an
external knowledge graph into a deep learning-based model should improve the explainability and robustness of
the model.

Keywords: Deep Learning, Neural Networks, Knowledge Graphs, External Knowledge, Explainability, Gener-
alizability, Scene Classification

1. INTRODUCTION

In the last decade, deep neural networks (DNNs) have become the gold standard for solving challenging clas-
sification problems, especially with complex sensor data (e.g., images and video). The Air Force is conducting
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extensive research into this technology for rapid, automated target identification and understanding of the bat-
tlefield. One of the striking differences between DNNs and previous classification techniques is that neural
methods are significantly more opaque and idiosyncratic in their decision-making. Well-known results in the
field have shown that deep neural models often latch onto details and relationships very unlike those utilized by
the human visual system.! Neural methods confidently classify many images in ways no human observer would.
But one of the primary goals of computer vision and deep learning could be described as replicating the human
understanding of the visual world. In this work, we propose integrating neural networks with external sources
of human-generated semantic knowledge and relationships (in the form of knowledge graphs) so that a neural
model’s decision-making and reasoning capabilities better align with that human understanding. We hypothesize
and experimentally validate that incorporating background knowledge from an external knowledge graph can
improve the explainability and robustness of a neural model.

Formalized distillations of human knowledge about objects and the world exist in the form of public knowledge
graphs such as WordNet,? WikiDate,> SUMO,* schema.org,” and freebase.® These include many distillations of
“common-sense” knowledge which span a wide range of domains (e.g., life sciences, geographical data, political
and government data, scientific data, data about media and publications) and are relevant for tasks already being
performed by machine learning-based models. The relationships of people and animals to their body parts, the
parts of structures and vehicles, and common context and spatial relationships between objects are among the
kinds of knowledge available.

Presently, DNNs must learn all semantic information on their own during training purely from observation.
While many DNNs are capable of learning complex tasks, such as image recognition, on their own, they will rarely
learn to perform these tasks in the same way as human beings, and thus, will often learn ‘around’ basic knowledge
of the world rather than learning it. Even stat-of-the-art models show behaviors such as e.g. classifying images
based on high-frequency information rather than information such as shape that humans use to make similar
decisions.”

By aligning neural networks with external semantic knowledge, we hope to help constrain them to more
human-like behavior, and thus alleviate several of the major issues they face. Neural networks that are grounded
to human knowledge may be capable of generating high-level descriptions of complex signals by using reasoning
that is comprehensible to human beings, at least in those steps of reasoning where human beings do the same.
Such models would possess explainability.® 1! Second, neural networks have been shown to be vulnerable to
adversarial attacks.!? 16 If a neural network classifies signals using the same features as human beings, it will, in
theory, not be vulnerable to perturbations which would not be human-detectable. Third, DNNs are frequently
among the best machine learning-based methods for classifying in-sample data, but often catastrophically fail
when confronted with related but out-of-distribution data or when attempting to classify images without the same
distribution of poses, backgrounds, and other incidental conditions as the training data.'” By grounding neural
networks to human-like semantic knowledge, DNNs should exhibit better generalizability in classifying out-of-
distribution data. Unlike models in use today, a neural network aligned with human knowledge and reasoning
should continue to exhibit human-like performance when exposed to some new situations. On a related note, if
the external knowledge really does represent distilled information relevant to a task, neural networks utilizing
it should not have to rely on as much raw sensory training data, much as human beings bring prior knowledge
to a learning task. Learning-based models that can achieve strong generalization with limited data is crucial in
many real-world applications; in real-world settings, classification systems often need to identify targets using
limited amounts of lower-than-expected quality data under novel operating conditions. Current neural networks
can rarely perform in such situations.

In this paper, we explore the effectiveness of aligning and integrating neural networks with external sources
of knowledge (in the form of knowledge graphs). Experiments are conducted on the ADE20K dataset,'® focusing
on the task of scene classification. The ADE20K dataset consists of images of general indoor and outdoor scenes
captured at ground-level using standard electro-optic cameras. We choose this dataset because it provides both
1) scene category labels for each image and 2) information about which objects (and their parts) are present in
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each image. This object information can be used as an additional form of supervision which ties the sensor data
(images) to external semantic symbols.

We propose a novel neural architecture that integrates external knowledge directly with a deep convolutional
neural network. Furthermore, we investigate how this new approach affects explainability and robustness com-
pared to traditional DNNs and simpler models. Our external knowledge comes in the form of WordNet,? a
hierarchically-organized lexical database. We align the 1,268 object types (not including object parts) labeled in
the ADE20K dataset with their corresponding terms in the WordNet ontology. Once this alignment is complete,
we construct a hierarchy of objects and their ancestor categories based on subclass-superclass relationships. In-
stead of knowing only that a “silver bird statue” is present in an image, for example, we also know that a “metal
statue”, “statue”, “decoration”, etc. are present in the image. We train an object recognizer on this “expanded”
object set, and use the predicted object probabilities as features that can then be fed into a logistic regression
model to perform scene classification. Because the features (object probabilities) are interpretable and the lo-
gistic regression model is a simple linear classifier, the model is capable of generating human-understandable
explanations. Interestingly, experiments show that our grounded and interpretable model achieves similar per-
formance (in terms of scene classification accuracy) compared to traditional unconstrained/black-box DNNs.
We also explore how the structure of the hierarchy can be exploited to further improve object recognition, and
conduct experiments analyzing the effect of calibrating the object prediction probabilities/scores, a necessary
step for improving trustworthiness. In both cases, we achieve better performance on the object recognition task
as measured by F1 score. Finally, we conduct experiments to determine how well the learned representation gen-
eralizes to unseen classes compared to a unmodified DNN that directly maps pixels to scene categories. To do
so, we formulate a basic few-shot scene classification problem. Disappointingly, the knowledge-driven approach
significantly under-performs the traditional scene classification DNN on this task, but this experiment does il-
luminate a few useful pieces of information. First, incorporating the knowledge graph into the model improves
generalizability compared to a model which uses only the objects that come labeled with the ADE20K dataset.
Second, compared to the traditional DNN, we gain some interpretability during the cross-domain knowledge
transfer. It is difficult to understand why and when the traditional DNN representation generalizes well, because
its features carry uninterpretable meaning. However, in our knowledge-based approach, features are grounded
to well-defined concepts, allowing us to understand why a representation may or may not work well for a given
domain. In future work this interpretability could be used to engineer new knowledge in order to improve a
model /representation.

2. RELATED WORK

We present our work in the context of varied efforts to leverage human knowledge for deep learning. Some efforts
attempt to exploit knowledge graphs directly, while others operate on prior knowledge imposed directly by the
creator of the model or learn to automatically exploit consistency with patterns in previously-seen data (i.e.,
such models “discover” a knowledge graph). While more tangentially related, we also discuss other approaches
to explainability.

2.1 Combining Knowledge Graphs and Deep Neural Networks for Computer Vision
Tasks

There has been some recent interest in combining knowledge graphs with neural networks for computer vision-
based tasks. Marino et al.!® use structured prior knowledge in the form of knowledge graphs to improve
performance on image classification. They train a neural network to predict every node in some knowledge
graph and then propagate information between nodes to refine predictions. Goo et al.?® utilize hierarchical
taxonomies to relate objects based on subclass-superclass relations in order to learn better features that are more
discriminative for classifying often confused sub-classes belonging to the same superclass. Guo et al.?! learn a
hierarchical classifier which combines a convolutional neural network for feature extraction with a recurrent neural
network for exploiting relationships between the predicted classes. Srivastava et al.,?? Fan et al.,?3 Kuang et al.,?*
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and Zhang et al.2’ each propose different tree-structured concept ontologies which organize large numbers of

concept classes (often objects) based on coarse-to-fine labels. Some of these methods also automatically discover
inter-related learning tasks. Roy et al.2® learn fine-to-coarse tree-structured DNN classifiers as well, but their
approach learns incrementally, so new classes can be added without having to retrain the entire network. Yan et
al.2” utilize DNNSs for hierarchical classification. Deng et al.?® introduce Hierarchy and Exclusion graphs, which
capture semantic relations based on mutual exclusion, overlap, and subsumption between two labels applied to
the same object. Other approaches??:3° utilize hierarchies and knowledge graphs to learn semantic embeddings.
Finally, some approaches attempt to exploit ontologies in order to better explain the behavior of deep neural
networks,!! and improve deep learning image interpretation.?! In contrast to other approaches, which exploit
knowledge graphs to refine predictions given in a black-box fashion, our method integrates knowledge graphs
earlier inside the neural network itself, producing more robust features for downstream tasks.

2.2 Improving the Explainability and Interpretability of Deep Neural Networks

Most neural networks are treated as black-box models: models that take in data and output decisions without
providing further explanations or evidence to support them. While black-box neural networks are powerful tools
that achieve state-of-the-art accuracy on a wide range of prediction tasks (especially visual recognition tasks),
such models are not well-suited for safety-critical applications (e.g., those used in defense) and applications
requiring trust in an autonomous or semi-autonomous agent. These applications require the use of explainable
and interpretable models. Lipton et, al.® define several properties of interpretable models, including 1) model
transparency and 2) post-hoc explainability. Model transparency is concerned with understanding how a model
works at the level of 1) the entire model, 2) its individual components (e.g., features, parameters, etc.), and 3)
the learning algorithm. However, useful explanations don’t always require understanding the exact process by
which a model operates. Post-hoc explainability is concerned with interpreting opaque models “after-the-fact”
without sacrificing predictive performance. The methods we explore in this paper primarily focus on building the
explanation into the neural network by grounding the decisions made by the network to human-understandable
semantic knowledge.

Recently, there has been great interest in improving the interpretability and explainability of deep neural
networks. The most popular and widely used methods focus on improving post-hoc explainability. Much of this
work focuses on identifying the pixels and edges in an image that are most informative with respect to a neural
network’s final decision.? 38 The major issue with these methods is that they tell us where a net is attending
to without telling us why that region is important. Interpretable Basis Decomposition (IBD)3 helps to alleviate
this problem by training separate classifiers for each concept in some known set of concepts (e.g., using objects
as explanations for scene classification) and also training a completely separate classifier for the target task. In
a greedy manner, the concept classifier that explains most of the direction of the target classifier is selected
and a residual is computed. Then, the concept classifier that explains most of the direction of the residual is
selected, and a new residual is computed. This process is repeated until the residual cannot be explained by
any of the remaining concept classifiers. Kim et al. propose a similar approach, “Quantitative Testing with
Concept Activation Vector (TCAV)” *? which provides an interpretation of a neural net’s internal state in terms
of human-friendly concepts. They show how to use directional derivatives to quantify the degree to which a
user-defined concept is important to a classification result, e.g., how sensitive a prediction of zebra is to the
presence of stripes.

There are also a number of methods proposed recently for making neural networks more transparent by
grounding the decisions of the networks to some semantic knowledge. Sarker et al.'! have proposed using
knowledge graphs to improve deep learning explainability but provide only a very preliminary study. Daniels
and Metaxas*!' explore an approach that is similar to IBD, but instead of learning the concept classifiers disjointly
from the target classifiers, they train a single model that first identifies and predicts meaningful sets of objects
(termed “scenarios”) and then use these scenarios as interpretable features that are fed into a linear classification
model for the target task. Hendricks et al.*?> proposes an alternative approach to improving model transparency
whereby an auxiliary model is learned that uses the features of a trained convolutional neural network as input
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to a language-based model (e.g., a recurrent neural network) to generate captions that explain the decisions
made by the visual recognition model. However, this approach suffers a major flaw: it is unknown if the
explanation generator really “explains” which features the visual classification model uses or if it just finds
new (and sometimes incorrect) plausible explanations based on shared features. Sometimes, the generated
explanations describe information that is not even present in the image. To correct for this, in their follow up
work,*3 Hendricks et al. ground the natural language explanations to visual cues by selecting explanations that
are both image- and class-relevant. Finally, instead of grounding neural network decisions to specific concepts
present in an image, one can also ground them to other “prototypical” instances of each class, e.g., Li et al.*
combine DNNs with case-based reasoning. Our approach is most similar to Daniels and Metaxas’ approach.*!
We try to improve model transparency by expanding the set of semantic concepts (e.g., objects) present in an
image using an external knowledge graph, learning to recognize these concepts using a DNN, and using these
predicted concepts as interpretable features for some downstream task (e.g., scene classification).

2.3 Exploiting Object Information for Visual Recognition Tasks

For our motivating application (scene classification), we explore utilizing object-based representations. Re-
searchers in the computer vision community have long been interested in incorporating object-based information
into visual recognition pipelines in order to improve visual recognition performance and model interpretability,
especially for scene understanding. One common approach is to model contextual information about scenes
based on object relations using a probabilistic graphical model.#>~®! These approaches involve either exploiting
information about multiple tasks (e.g., scene classification, object recognition, semantic segmentation) to im-
prove the performance of each individual task, or exploiting relationships between objects and the scene context
to improve performance on some task. Our approach is different because it learns sequential models for object
recognition and scene classification instead of jointly learning a single model, but it is similar in that we use a
graph-based model to refine object predictions in order to make them consistent with a given knowledge graph.

Another way to exploit relationships between objects in order to improve scene understanding is by learning
to organize objects (and sometimes their parts) into hierarchies and taxonomies, and then exploiting these
hierarchies to improve performance on some other scene understanding task. For example, one can try to model
objects by their parts, e.g., if one is trying to identify houses, he or she might first search for roofs, doors, windows,
and walls.%? 4 Alternatively, one can learn how objects are naturally grouped into either tree structures or sets,
e.g., see 55-57. Similarly, tree-based hierarchical context models have shown promise®??%26 for refining object
predictions and detecting out-of-context objects. Other methods for exploiting hierarchies of concepts have been
successfully applied to more specific applications such as content-based image retrieval.®87%0 In future work, we’d
like to explore how to combine learning the relationships that exist between objects with our existing approach
that assumes a known knowledge graph.

ObjectBank®!:52 proposed using the output of generic object detectors as feature extractors for higher-level
scene classification tasks. This is similar to our approach, but we rely on multi-object recognition instead
of detection, and we incorporate external knowledge graphs to expand the object set and refine the object
predictions.

Finally, object information can be helpful for explaining how otherwise complex models arrive at their deci-
sions. The Interpretable Basis Decomposition® previously mentioned is one such method. Xie et al.53 also tries
to explain the decisions of neural networks for scene classification by grounding DNNs to known information
about objects, a major focus of this work.

3. DATA
3.1 ADE20K

The ADE20K dataset'® consists of images of indoor and outdoor scenes captured at ground-level using an electro-
optic camera. We chose this dataset because it includes a rich amount of semantic information, facilitating its
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Figure 1. Left: A histogram relating each object to the number of times it appears in the subset of the ADE20K dataset
used in our experiments. Right: The scene class distribution used in our experiments

alignment with existing external sources of knowledge. Each image in the ADE20K dataset has an associated
scene label (e.g. bedroom, kitchen, street), a text file that identifies the objects and parts present in an image,
and pixel-level segmentations for objects and parts. In our experiments, we utilize information about all 1,268
unique first-level objects (i.e., we exclude parts-of-objects) provided by the dataset. The pixel-level segmentations
were also not used in our experiments. In Fig. 1, we show how frequently each object appears in the dataset.
Note that most objects appear very rarely (i.e., less than ten times in the entire dataset), which poses challenges
discussed later.

For most of our experiments, we use the subset of scene classes that have at least 100 total images (between
train, test, and validation splits), resulting in 16 scene classes and 8,446 total images split into 7,131 training,
876 testing, and 439 validation. For the few-shot learning experiments, we use a disjoint subset of 26 classes
and sample 50 instances from each class for a total of 1,300 additional images. Fig. 1 shows the scene classes
used in the majority of our experiments and the distribution of images into each of these classes. Note that the
scene class data is imbalanced, but we find that this presents fewer challenges than the imbalance in the object
data. The only major issue we encountered due to this imbalance is that when two classes are both visually and
semantically similar (e.g., bedroom and hotel room), the trained model is likely to default to the class with more
training instances.

We also artificially inflate the size of our training data using data augmentation. When we sample an image
from the dataset, we randomly crop the image so the area of the cropped image is 80% of the original image,
we flip the image randomly with 50% probability, and randomly jitter the brightness, contrast, and saturation.
Likewise, to improve training efficiency, we resize each image to 224 pixels-by-224 pixels and normalize the image
using the mean pixel value and standard deviation.

3.2 WordNet

We used WordNet,? a hierarchically-organized lexical database, as our source of external knowledge. WordNet
groups nouns, verbs, adjectives, and adverbs into sets of “cognitive synonyms” called synsets, and then organizes
these synsets into a hierarchy based on hypernym (subclass-superclass/is-a) relations. For example, {feline,
felid}, {cat, true cat}, and {cat, big cat} are several examples of synsets because the words in each set carry
equivalent semantic meaning. Likewise, “feline” is a direct hypernym of both “true cats” (domestic cats and
wild cats) as well as “big cats” (e.g., lions and tigers) because all “true cats” and “big cats” are felines, and thus,
we can say that “true cats” and “big cats” are related by a shared parent class “feline”. In this work, we will
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Figure 3. An overview of the few-shot scene classification task where a representation is learned on classes with a lot of
data and applied to a disjoint set of classes with little data and minimal fine-tuning

align the objects in the ADE20K dataset to their corresponding synsets in WordNet and use this information to
1) expand the set of object labels to include all parent objects, thus, giving us more complete, less noisy, and
richer semantic information, and 2) hierarchically organize the objects, so we can exploit this known structure
to improve our object predictions and the interpretability and trustworthiness of our model.

4. PROBLEM

In our experiments, we consider two problems: traditional scene classification and few-shot scene classification.
We provide a brief overview of these problems in the following sections.

4.1 Traditional Scene Classification

Scene classification is a standard visual recognition task. In Fig. 2, we show a typical pipeline where an image is
fed into a model, and the model makes a prediction about the identity of the scene category (e.g., dining room,
kitchen, park, street, etc.).

4.2 Few-Shot Scene Classification

Few-shot scene classification is a related problem (see Fig. 3 for an overview). In few-shot learning, there exists
one set of classes with ample training data, and a second, disjoint set of classes for which very little training
data is available. These are analogous to source and target domains in transfer learning. The goal is to, by
exploiting the source data, learn a model which can classify the target classes given only a small support set of
examples for each class. In this paper, we specifically explore how well the representations learned on the source
data generalize to the target classes, and whether this generalization is improved by the addition of external
knowledge. Our experiments use 5-shot learning, where only five examples of each target class are provided for
training.
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5. METHODOLOGY
5.1 A Simple Object-Based Model for More Explainable Scene Classification

The first stage of our method involves predicting which objects are present in each scene image. To do so, we use
deep convolutional neural networks (CNNs),%4 6% the current gold standard for visual recognition. Convolutional
neural networks are a class of neural networks that perform feature extraction and prediction (in our case,
classification) in an end-to-end manner. They are especially efficient at exploiting patterns in chain- and grid-
structured data (e.g., images), and are thus frequently used for visual recognition tasks. In this work, we utilize
the popular ResNet-18% architecture as our feature extraction/recognition model. While it is possible to train
a CNN to directly predict the scene class from pixel-level visual data, such a model is not ideal if we care about
explainability. Instead, our approach is to decompose the classification problem into multiple steps based on
the external knowledge and supervision available. In the case of this specific problem, we have knowledge and
supervision pertaining to physical objects, which should contain most of the information necessary for the final
task of scene classification. So our neural network will 1) predict all of the objects present in a scene, and 2) use
these predictions as features to a (linear) logistic regression model which performs the actual scene classification.
Note that each of these models must be trained seperately, otherwise the intermediate features intended to encode
the probabilities of object presence may encode other, hidden (and potentially brittle) information.

In this way, intermediate “features” of our scene classification model are able to be understood by humans
(i.e., how likely is it that each object is in the image?), and the classifier is also interpretable because it is a
simple linear model (i.e., if an object is associated with a large positive weight for a specific scene class, then
it is strong evidence in favor of predicting that scene class, and the opposite holds for objects associated with
large negative weights). Unlike traditional object recognition which involves predicting a single object that is
generally the focus of an image (i.e, centered and consisting of the majority of the image’s pixels), we need
to learn to simultaneously predict the presence of all objects in a scene, and these objects vary in size and
are spread throughout the image, making multi-object recognition in scene images a more challenging problem
than traditional object recognition. This multi-object recognition problem is an example of a binary multi-label
classification problem, so we optimize our network by trying to minimize the multi-label binary cross entropy
loss:

M N
1 : ; : :
1: : e mee = — ( (J) A(J) 1— (J) 1— A(J) 1
Goa méln 108Spmce, 0SSy TN g:l jEZI 0;10g(6;”") + (1 — 0, )log(1 — 6, )) (1)
where ogj ) € {0,1} is the true label for an object i in a given scene instance j, égj ) ¢ [0,1] is the probability

output by the neural network that object ¢ is present in scene instance j, M is the total number of objects, and
N is the total number of training examples in a mini-batch. We train the network using a learning rate of 1.0e-3,
a weight decay value of 1.0e-5, and a batch size of 16. ADAM is used as our optimization algorithm. We train
the net until convergence is achieved on a held out validation set.

These object recognition probabilities are input to a linear multinomial logistic regression model to perform
scene classification. To train this model, we use the standard multi-class variant of the cross entropy loss:

N
. 1 R?
Goal: mglnlossce, l0S5ce = N jg,l log (SEQLG) (2)
where §§ZL€ € [0,1] is the probability output by the model for the true scene class for a given scene instance j,

and once again, N is the total number of training examples in a mini-batch.

5.2 Aligning ADE20K to the WordNet Knowledge Base

Several challenges exist to the basic approach discussed in the previous section. First, the object labels provided
by the ADE20K dataset are often noisy and incomplete. There are ambiguous labels, e.g., “bowl” and “bowls”
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are treated as separate labels. Second, some labels are extremely specific, e.g. the dataset contains an object
labeled as “silver bird statue”. Third, there are also human errors in labeling where the human annotator
sometimes incorrectly labels object that don’t exist in a scene or vice versa. Fourth, some objects are very
difficult to learn to recognize from visual data because they appear very infrequently (the majority of objects
in the dataset appear fewer than ten times), and so the data-hungry learning-based model cannot capture all of
the variations of appearance for such data-limited object classes. Fifth, some objects are very small in the scene
images, so it is too difficult for the CNN to learn the fine-grained visual patterns necessary to accurately identify
them from images. We will now discuss how we can exploit the freely-available WordNet knowledge base in order
to alleviate many of these issues. For an overview of the structure of the WordNet knowledge base, please refer
to section 3.2.

Each of the 1,268 objects in the ADE20K dataset are semi-automatically mapped (with manual corrections)
to their corresponding synsets in WordNet. If no relevant direct synset exists for an object, it is mapped to
its closest matching ancestor synset (hypernym). Once this mapping is complete, an object hierarchy can be
constructed by recursively traversing the direct hypernyms of each term in WordNet. For example, starting
with the “chair” object/synset, we can add the “seat” object/synset followed by the “furniture” object/synset,
and so on and so forth until the root node for WordNet is reached. Once the full hierarchy is constructed, it
is pruned to remove redundant nodes and edges. Consider the following example: “wall” is-a “partition” is-a
“structure”. Suppose the only subclass of “partition” that appears in the data is “wall,”* then it would be
redundant to predict both “wall” and “partition” because they are effectively identical terms, and similarly, it
would be incorrect to learn a model for “partition” that is identical to wall since in the real world there are non-
wall partitions. Thus, to simplify the knowledge graph, improve semantic correctness, and remove redundancy,
we prune the “partition” class and make “structure” the direct parent class of “wall”. Furthermore, we can
perform an additional different type of pruning to remove nodes if their corresponding object appears fewer than
k times in the subset of the ADE20K dataset used in our experiments. This is useful for times when we need
some minimum number of examples to train a relatively accurate object recognition model. It should be noted
that this type of pruning can result in valid chains in the graph because the parents of the pruned children still
capture information about the pruned children, so no two nodes are exactly equivalent. For example, we might
encounter the chain “painting” is-a “art” is-a “creation”. In this case, there might be a “sculpture” object that
appears less than the desired number of times in the data, so it gets pruned, but the “art” object is still labeled
as present if either the “painting” or “statue” object appears in a scene, and so “painting” and “art” are not
synonomous terms. In Fig. 4, we show a very small subgraph of the aligned knowledge graph to demonstrate
how much additional semantic information is gained by aligning the objects in the ADE20K dataset to WordNet.

Once we have a final pruned object hierarchy, we can generate an expanded object set. Whereas the original
object set would consist mostly of the leaf nodes of the object hierarchy, the new expanded object set treats
every node in the hierarchy as its own object/label. Then, we can train an object recognition model to predict
this expanded object set. By expanding the graph and predicting the expanded object set, we can solve some of
the issues previously discussed:

e Ambiguous labels are merged, e.g., the “bowl” and “bowls” objects would be mapped to the same “bowl”
synset term in WordNet.

e Object information is captured at multiple levels of granularity, so instead of just predicting extremely fine-
grained labels such as “silver bird statue”, we now also know that this object is an example of a “statue”,
which also makes it an example “art”, and so on and so forth. Likewise, to make coarse predictions about a
scene category (e.g., kitchen), it might be unnecessary to know fine-grained information about the objects
in the scene, i.e., instead of needing to know the “fork”, “knife”, and “spoon” objects are present, it is
sufficient to know that “silverware” is present.

*This is just an example. In practice, there are non-wall partitions our dataset.
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Figure 4. A small subgraph (after heavy pruning) of the aligned knowledge graph demonstrating how much additional
semantic information is captured by aligning ADE20K to WordNet

e Higher-level categories appear much more frequently than some of their children. This means while there
might not be enough training data to learn to recognize some object, there might be enough training data
to recognize one of its ancestors, and so some information about the object is still preserved which might
have otherwise been lost.

5.3 Calibrating Object Recognition Scores

Deep neural networks are generally powerful tools for making predictions and decisions, but they have imperfec-
tions. One flaw in modern networks is that since they have an incredibly large number of parameters and are
highly nonlinear, they have a proclivity to overfit to the training data and be overly confident in their predic-
tions. Many real world applications, especially those in defense, require learning-based models to not only be
highly accurate but also be able to indicate when a prediction might be wrong, i.e., the neural network should
be able to provide a realistic measure of confidence for an output prediction (a calibrated confidence”). Using
calibrated confidences is especially important from an interpretability perspective. When a network says an
object is present with probability greater than 0.5, it should mean that the net believes the object is actually
present in the image. In this section, we discuss an approach for calibrating the object prediction scores output
by our object recognition model.

First, the neural network is trained to convergence for object recognition. These parameters are frozen before
moving onto the next step. It is crucial that these do not change during the calibration process or during training
for the final task. Then, the logits (values output by the network before they are passed to the sigmoid function)
are extracted for each object for each wvalidation instance. Our goal is to learn scaling a and shift b parameters
for a sigmoid function that maps the logits /; to a calibrated score 6 for each object i.:

. 1
%i = 1+ e—ailli=bi)

(3)
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Unlike traditional confidence calibration methods like Platt scaling®® and temperature scaling®” which use
the negative log-likelihood as the supervisory single (i.e., they perform maximum likelihood estimation), we take
a slightly different approach and calibrate by minimizing a continuous approximation®® of the fl-measure:

M N () (d)
Goal: minlossy, lossp = —% ( f]* ;;):1 % ;i (j)> (4)
ab =1 \2ojm1 0 205210

where M is the total number of objects, IV is the number of validation instances, ogj) € {0,1} is the true label

for object ¢ in instance j, and ég(J ) is the calibrated score for object i in instance 5. We use a continuous
approximation of the fl-measure because our object labels tend to be very imbalanced, i.e., most objects appear
very infrequently, and so maximum likelihood estimation is often overly aggressive about predicting probabilities
closer to zero whereas the fl-measure considers the tradeoff between precision and recall.

5.4 Exploiting the Hierarchical Structure of the Knowledge Graph to Refine Object
Predictions

In addition to providing a means of generating a larger object set that captures more semantic information, the
knowledge graph also provides tools for helping humans understand when the network makes certain mistakes.
Using this information, methods for structured prediction can be used to refine the object predictions output by
the neural network leading to more accurate predictions and subsequently more interpretable and trustworthy
models. In this section, we propose one simple method (as a proof of concept) for showing how knowing the
structure of the knowledge graph can improve object recognition.

The hierarchical structure of the knowledge graph tells us that there should never be a case where a child
object is predicted as being present when its parent is predicted as being absent. However, up to this point, our
method has treated the prediction of the expanded object set as a “flat” classification problem, i.e., the network
has no knowledge of the relations that exist between objects and essentially, must learn these from data. Because
the network is not constrained to perform hierarchical classification, it very occasionally (in ~ 1% of predictions)
makes this type of error. We can attempt to correct these known and easily identifiable mistaken predictions in
a post-hoc manner. To do so, we formulate the following optimization problem:

N M
Goal: n}/i/nlossmfme, 108Srefine = Z Z (62/(” - 6;(3))2 + Z maz(éﬁ{(” AN (5)
o j=1 i=1 (q,m)€(child,parent)

where M is the number of objects, N is the number of instances, 62/0 )
7 in instance j, é/i(J ) is the calibrated prediction score for object ¢ in instance j, and (child, parent) is the set
of all (child, parent) object relations. The idea behind this optimization problem is to minimally change the
scores of the predictions (enforced by the first term) while fixing cases where the score for the child is larger
than the score for the parent (enforced by the second term), i.e., how can the predictions be changed to fix any
violations of the knowledge graph-based constraints in a minimally-disruptive manner? Note that this method
is unsupervised because it doesn’t have any knowledge of what the correct predictions actually are; instead, it is
simply exploiting the confidence scores of each object prediction and the known relationships that exist between
objects.

is the refined prediction score for object

5.5 Summary of Approach

Our complete approach can be summarized as:

1. Align the objects in ADE20K to synsets in WordNet.
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Table 1. Accuracy on the scene classification task for several baseline models

Approach Scene Classification Accuracy
Unmodified ResNet 0.817
Ground Truth Objects (Initial Set) + Logistic Regression 0.910
Ground Truth Objects (Expanded Set) + Logistic Regression | 0.910

2. Using WordNet, generate and prune an object hierarchy knowledge graph.

3. Using the mined knowledge graph, generate an expanded object label set.

4. Train an object recognition CNN to predict the expanded object label set.

5. Calibrate the object prediction scores.

6. Refine the object prediction scores to fix violations in constraints imposed by the knowledge graph.

7. Train a linear logistic regression model for the scene classification task using the refined object prediction
scores as features.

6. EXPERIMENTS AND RESULTS

In the following sections, we perform a quantitative investigation into the effectiveness of each component of our
approach.

6.1 Experiment 1: The Importance of Utilizing Grounded, Semantic Information

Neural networks are good at learning highly-discriminative visual features that often capture some semantic
information. In this first set of experiments, we want to see if there is any benefit to using grounded, semantic
information (in our case, the objects present in a scene) over (just) the features discovered by a neural network.
If there is, then it should be beneficial to train a network guided by this additional knowledge (objects) instead
of relying on labels for the target task (scene classification) as the only means of supervision.

We train an unmodified ResNet-18 CNN to perform end-to-end scene classification as our baseline. We then
train a logistic regression model that uses the ground truth object labels (initially, only using those present in
the ADE20K dataset) for each scene image as features for scene classification. We also want to see how much
additional information can be obtained by expanding the object set using the WordNet ontology, so we train
another logistic regression model for scene classification which uses the knowledge-graph expanded object set for
each scene image as features. Results appear in Table 1.

This experiment tells us several pieces of useful information. First, while the unmodified ResNet model
performs very well, it still notably under-performs (by about 10%) compared to a simple linear model that has
perfect information about the objects present in a scene. This is especially interesting because the object-based
model is much easier to interpret than the baseline unmodified ResNet. Second, this experiment tells us that
if we have perfect knowledge of the initial set of objects then we gain little to no additional useful information
w.r.t. scene classification if we use the expanded object set derived from the WordNet ontology. One possible
explanation for this result is that with perfect information, the machine learning model (even a simple linear
classifier) might be able to naturally discover and exploit most of the relevant relationships between objects.
The semantic nodes provided by the knowledge graph used here can be expressed as OR functions (i.e. piecewise
linear functions) of the objects.

However, in practice, we do not have perfect knowledge of the objects in a scene; instead, we have to recover
this information from a sensor (in this case, a camera) by performing object recognition/detection using a separate
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Histogram of Average Precision (AP) Values for Object Recognition Task
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Figure 5. Evaluating the performance of a DNN trained to perform multi-object recognition on the objects that appear
in at least 25 training instances in the subset of the ADE20K dataset used in our experiments

learning-based model (in this case, another ResNet-18 neural network). In the next several experiments, we will
see: 1) multi-object recognition in scene images can be very imperfect and 2) when object recognition is noisy,
the structure provided by the knowledge graph leads to notably improved performance.

6.2 Experiment 2: Understanding the Limitations and Impact of Noisy Object
Recognition

Multi-object recognition in scene images can be very noisy. There are many different reasons for this, including
that 1) the object recognition model is trained on imperfect and sometimes ambiguous labels; 2) unlike traditional
object recognition, the model must be able to at least roughly localize the object in the image (or pick up on
surrounding context clues); 3) some objects are extremely small, so there are not enough details to learn the
fine-grained patterns needed to distinguish between certain objects; and 4) most importantly, there often is not
enough data for a given object to learn all of its variations in appearances. To understand just how good or
bad a DNN is for performing object recognition on our data, we train a ResNet-18 model to try to predict all
objects that appear at least 25 times in the training data (because we assume there is little chance of learning
an accurate classifier for the remaining objects which appear fewer than 25 times). We compute the average
precision (a summary statistic of the area under the precision-recall curve) for each object. This is a useful
metric because 1) as a metric averaged across classes, it is suited for classification tasks with significant class
imbalance, and 2) it doesn’t require us to threshold output scores as opposed to other common metrics like the
fl-measure and accuracy. Results appear in Fig. 5.

The general message that can be taken away from this experiment is that, in general, most objects in the
dataset (even after heavily pruning the object set to only consider those objects with at least 25 appearances)
are recognized very poorly. Thus, when we use predicted objects as features for scene classification, we should
not anticipate achieving the high levels of accuracy obtained in the previous example when using the ground
truth object data.

An interesting observation we have found is that the quality of the object recognition model tends to be
proportional to the number of training examples for each object class. In Fig. 6, we see that as we prune the
object set to those objects which appear most frequently, the object recognition mean average precision (mAP)
value increases. Thus, we can restrict our scene classification features by only considering the objects that are
able to be accurately recognized from visual data.
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Figure 6. Understanding the effect of sample size on multi-object recognition
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Figure 7. Understanding how scene classification performance is affected by object set size and quality. Left: evaluating
models trained on ground truth object data; Right: evaluating models trained when using object recognition scores

Next, we must understand how scene classification performance is affected by pruning the object set based
on minimum number of appearances. The left chart in Fig. 7 shows how scene classification quality degrades
as objects are pruned when using the ground truth object data as features. The right chart in Fig. 7 shows
how scene classification quality degrades as objects are pruned when using the predicted object probabilities
as features. Note that in both cases, as we prune objects, we lose useful information, and scene classification
accuracy quickly degrades.

6.3 Experiment 3: Improving Performance by Utilizing Knowledge Graphs

In section 5.2, we listed several of the ways that aligning the objects in the ADE20K dataset to the WordNet
knowledge base and using this alignment to generate an object hierarchy and expanded object set should be
beneficial for improving the robustness and explainability of the object-based representation. To summarize, we
hypothesized: 1) ambiguous labels would be merged, 2) object information would be captured at multiple levels
of granularity, and 3) since higher-level categories appear much more frequently than some of their children, while
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Table 2. Evaluating the performance of various approaches for scene classification

Approach Min. Obj. Appears. | Obj. Rec. mAP | Scene Class. Acc.
Unmodified ResNet N/A N/A 0.817
OR + LR: Initial 400 0.599 0.751
OR + LR: Expanded 400 0.601 0.788
OR + LR: Initial 800 0.776 0.752
OR + LR: Expanded 800 0.777 0.764

Table 3. Evaluating how object recognition and scene classification are affected by calibrating the object prediction scores

Approach Min. Obj. Appears. | Calib.? | Obj. Rec. Macro-F1 | Scene Class. Acc.
OR + LR: Expanded 400 No 0.557 0.788
OR + LR: Expanded 400 Yes 0.587 0.773
OR + LR: Expanded 800 No 0.723 0.764
OR + LR: Expanded 800 Yes 0.741 0.754

there might not be enough training data to learn to recognize some objects, there might be enough training data
to recognize their ancestors, so some information about pruned objects (which might have otherwise been lost)
can still be preserved.

Recall Figs. 6 and 7. Fig. 6 shows that as we prune objects based on the number of times they appear in
the training dataset, the expanded object set 1) generally achieves equal or slightly higher object recognition
results despite 2) working with a larger number of selected objects (i.e., because some of ancestor objects appear
much more frequently than the leaf objects). Fig. 7 shows that while performance on the scene classification
task still degrades as objects are pruned, the effect is less severe when using the knowledge graph-expanded
object set. One interesting thing to note is the “bump” in the right chart of Fig. 7 when the threshold for
minimum number of object appearances is set to 400. We hypothesize that this is the point where there is a
good tradeoff between the amount of information preserved in the selected objects while the object recognition
accuracy remains somewhat decent (mAP ~ 0.6).

Finally, we summarize how our initial object-based model (OR + LR: Initial) compares with the knowledge
graph-expanded object-based model (OR + LR: Expanded) and also how the unmodified ResNet-18 DNN for
scene classification compares with our object-based approaches in Table 2. It should be noted that the unmodified
ResNet-18 model outperforms our object-based model, but the best object-based model only under-performs by
a few percentage points and remains significantly more interpretable.

6.4 Experiment 4: Understanding the Effects of Object Prediction Score Calibration

Up to this point, the experiments have utilized models with uncalibrated probability estimates. In this experi-
ment, we wish to see if the calibration method proposed in section 5.3 is effective, and want to understand the
impact of utilizing calibrated object prediction scores on the scene classification task. Unlike the previous exper-
iments where we used mAP as our metric for evaluating the quality of the multi-object recognition, here we will
use the macro-fl-measure which averages the fl-measure over all object classes. We make this change because we
specifically want to know how the object recognition model performs when the prediction scores are thresholded
at 0.5 because most humans intuitively assume a score greater than 0.5 means the object is present in an image
and assume a score less than 0.5 means the object is absent from an image. The results in Table 3 suggest that
the calibration does indeed work (i.e., it improves the fl-measure by several percentage points in each tested
case). However since the calibration method manipulates the parameters of a sigmoid, some information is lost
near the asymptotes of the sigmoid, so we do see a minor ( 1%) decrease in scene classification performance.
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Table 4. Evaluating the effect of the object refinement strategy on scene classification accuracy

Approach Min. Obj. Appears. | Refined? | Scene Class. Acc.
OR + LR: Expanded 400 No 0.773
OR + LR: Expanded 400 Yes 0.774
OR + LR: Expanded 800 No 0.754
OR + LR: Expanded 800 Yes 0.758

6.5 Experiment 5: Refining Object Predictions by Exploiting the Known Structure of
the Knowledge Graph

In this experiment, we evaluate the object prediction refinement strategy proposed in section 5.4. First, we
consider the calibrated model for the object recognition DNN trained to predict the knowledge graph-expanded
set of objects with at least 400 examples in the training data. On the test dataset, 150,325 total predictions
are made about objects. Of these predictions, there are 784 violations of the constraints imposed by the known
knowledge graph (i.e., a child is predicted present while its parent is predicted absent). 1,547 object predictions
are involved in these 784 violations. Initially, 730 of these object predictions are correct and 817 of the involved
object predictions are incorrect. After refinement, 828 of the involved object predictions are correct, and 719 of
the predictions are still incorrect.

Next, we consider the calibrated model for the object recognition DNN trained to predict the knowledge
graph-expanded set of objects with at least 800 examples in the training data. On the test dataset, 85,041 total
predictions are made about objects. Of these predictions, there are 441 violations of the constraints imposed by
the known knowledge graph (i.e., a child is predicted present while its parent is predicted absent). 876 object
predictions are involved in these 441 violations. Initially, 418 of these object predictions are correct and 458 of
the involved object predictions are incorrect. After refinement, 484 of the involved object predictions are correct,
and 392 of the predictions are still incorrect.

There are several things to note. First, the object recognition models are extremely good at making knowledge
graph-consistent predictions despite having no prior knowledge of the relationships that exist between objects.
Only 1-2% of object predictions violate the constraints imposed by the graph. Second, even the simple refinement
strategy proposed in section 5.4 is effective at correcting some of the incorrect object predictions, providing
supplemental evidence that there are additional benefits to combining knowledge graphs with learning-based
models for visual recognition tasks. That being said, the refinement strategy corrects such a small proportion of
mistakes that it ultimately doesn’t dramatically effect the downstream scene classification task (see Table 4 for
empirical validation of this).

6.6 Experiment 6: Understanding the Generalizability of Object-Based Representation
Using Few-Shot Scene Classification

In our final experiment, we want to measure the generalizability and robustness of our learned representations
when confronted with out-of-distribution data. We consider the few-shot scene classification problem. Please see
section 4.2 for an overview of this problem. We use the models learned on our large standard dataset of 16 classes
as generic feature extractors. For the unmodified ResNet-18, this involves outputting the 512-dimensional features
that are extracted before the classification layers. We also consider the calibrated object prediction scores output
by the object recognition model trained only on the initial ADE20K-only object set (OR: Initial 4+ Calibrated),
the calibrated object prediction scores output by the object recognition model trained on the knowledge graph-
expanded object set (OR: Expanded + Calibrated), and the refined calibrated object prediction scores output by
the object recognition model trained on the knowledge graph-expanded object set (OR: Expanded + Refined).
However, for each of the object-based feature sets, we add an additional pre-processing step, and binarize the
features using a threshold of 0.5 to remove some noise and help the generalizability of the representation.
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Table 5. Understanding the generalizability of various learned representations on a 5-shot recognition problem with 26
previously unseen classes

Approach Min. Obj. Appears. | Top-1 Acc. | Top-3 Acc. | Top-5 Acc.
Unmodified ResNet N/A 0.297 0.550 0.687
OR: Initial 4+ Calibrated 400 0.202 0.453 0.612
OR: Expanded + Calibrated 400 0.217 0.467 0.632
OR: Expanded + Refined 400 0.217 0.464 0.625
OR: Initial 4+ Calibrated 800 0.196 0.459 0.622
OR: Expanded + Calibrated 800 0.214 0.458 0.622
OR: Expanded + Refined 800 0.209 0.457 0.619

We run 10-fold cross validation where each fold consists of five support instances per class (for 26 total classes)
and 45 query instances per class. We learn a naive Bayes classifier on the support set. We choose to use the
naive Bayes classifier because generative models generally work better than purely discriminative models (like
logistic regression) in low-data regimes, and the naive Bayes classifier is considered to be the simplest generative
model. For the unmodified ResNet features, we use a Gaussian naive Bayes model, and for the object-based
representation, we use a Bernoulli naive Bayes model. We measure the top-1, top-3, and top-5 accuracies where
the top-k accuracy denotes how often the correct class appears in the top-k most likely predicted classes. Results
appear in Table 5.

We see that the representation learned on the unmodified ResNet significantly outperforms the object-based
representations. There are several possibilities for why this might be the case including 1) the dimensionality of
the unmodified ResNet’s feature space is much larger; 2) the unmodified ResNet features are designed to well-
separate classes whereas the object-based representations have no scene class-level supervision when they are
being learned; 3) the unmodified ResNet features are continuous whereas the object-based features are binary,
and 4) since we only learn to recognize the objects that appear frequently in a very small set of 16 classes,
there might not be enough semantic variability in this set of classes to generalize well to other scenes, but
there might be enough visual variability (which the unmodified ResNet can exploit), and thus, the unmodified
ResNet features work better. However, compared to the traditional DNN, we gain some interpretability during
the cross-domain knowledge transfer. We do not know why the traditional DNN representation generalizes well
because we do not have an understanding of how to easily and meaningfully interpret the features. With the
knowledge-based approach, since the features are grounded to human-understandable concepts, we have the
ability to analyze in which cases these features are used successfully and likewise, in which cases these features
are used unsuccessfully. This enables us to form hypotheses about what additional information is needed in
order to improve the generalizability of the representation when applied to some new domain and thus, provides
a tool that can be used to help engineer new knowledge in order to improve the model/representation.

When we compare the object-based representations learned on the initial object set to the knowledge graph-
expanded object set, we see that the extra information typically improves generalizability. We also see that the
unrefined expanded object set-based representation slightly outperforms the refined object set-based represen-
tation. We do not know why this is the case, but the differences are so small (i.e., less than a percent in every
case) that it could be random noise.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated the possibility of leveraging formal, symbolic knowledge from a public
database in combination with a deep artificial neural network. This was done via decomposing the machine
learning task in accordance with the available external knowledge (by first predicting some set of atomic concepts,
e.g., objects, and then using the predicted concepts as features for a downstream task, e.g., scene classification)

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.
(©2020 Society of Photo-Optical Instrumentation Engineers (SPIE)



To Appear in Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications
(SPIE Defense + Commercial Sensing)

and utilizing additional supervision generated by establishing connections between the training data and semantic
concepts in the external database. These structural changes nominally limited the input/output mappings
learnable by the network, but in fact, they introduced additional human-interpretable nodes to the network
without significantly changing performance. Furthermore, we experimentally validated the hypothesis that using
a knowledge graph to process these intermediate conclusions can result in a more robust representation for
downstream tasks.

We believe this suggests several important avenues for future work. Owur process for exploiting external
knowledge here uses additional supervision above and beyond what is normally required to train a fully-supervised
model for a given task. In these experiments, instance-level object annotations were used, annotations much
denser than the simple labels normally required for traditional image classification. This is costly and limits the
possible data-efficiency benefits of leveraging external knowledge, so future work will seek to reduce the amount
of extra supervision required. It is possible that a model which already has an existing framework of known
concepts will be able to assimilate new concepts (including new end tasks) with limited supervision by exploiting
their relationships to known concepts. It may be the case that learning ‘sub-tasks’ requires additional upfront
effort, but is more re-usable, producing compounding benefits later on in a sufficiently large system.

There may also be more general ways to exploit concept relationships in external knowledge. The current
approach operates exclusively on ‘is-a’ relationships, where the presence of concepts in a specific category also
implies the presence of concepts in a more general category (i.e. chair implying furniture). But many other
kinds of relationships exist and are generally captured in knowledge graphs. Prominent examples include part-of
relationships or causal relationships. It is not yet clear how to leverage arbitrary semantic relationships, or if
different classes of relationships must be individually considered.

Because our model is explainable, it also helps us understand when its knowledge might be insufficient
when applied to an existing or new domain. An interesting future direction would include exploring how these
explanations can be used as feedback for helping humans generate new knowledge in order to improve the
generalizability of a model.

Finally, future work should investigate alternative neural architectures incorporating nodes which represent
externally-defined semantic concepts. In the current work, the placement of these nodes directly prior to the
prediction layer of our network here has exceptionally clear benefits for human interpretation. It may be ad-
vantageous, however, for a model to potentially learn a non-linear function of semantic concepts, which can
be accomplished by inserting multiple dense layers between a semantically-defined layer of a deep network and
its final output. It should also be possible for multiple semantically-aligned layers to exist, with ‘higher-level*
concepts at later layers existing as a function of ‘lower-level* concepts in earlier ones. The multilevel object-part
relationships in ADE20K provide a possible test case for this sort of reasoning. But whether such structures
must be hand-engineered or can be derived automatically from the structure of a knowledge graph remains for
future exploration.
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