
FAIM/FIX/IJCAI Workshop on Explainable Artificial Intelligence (XAI) 2018

ScenarioNet: An Interpretable Data-Driven Model for Scene Understanding
Zachary A. Daniels1, Dimitris Metaxas1

1 Department of Computer Science, Rutgers University
zad7@cs.rutgers.edu, dnm@cs.rutgers.edu

Abstract
The ability for computational agents to reason about
the high-level content of real world scene images is
important for many applications. Existing attempts
at complex scene understanding lack representational
power, efficiency, and the ability to create robust meta-
knowledge about scenes. We introduce scenarios as
a new way of representing scenes. The scenario is an
interpretable, low-dimensional, data-driven representa-
tion consisting of sets of frequently co-occurring ob-
jects that is useful for a wide range of scene under-
standing tasks. Scenarios are learned from data using
a novel matrix factorization method which is integrated
into a new neural network architecture, the Scenari-
oNet. Using ScenarioNet, we can recover semantic in-
formation about real world scene images at three levels
of granularity: 1) scene categories, 2) scenarios, and 3)
objects. Training a single ScenarioNet model enables
us to perform scene classification, scenario recognition,
multi-object recognition, content-based scene image re-
trieval, and content-based image comparison. Sce-
narioNet is efficient because it requires significantly
fewer parameters than other CNNs while achieving
similar performance on benchmark tasks, and it is in-
terpretable because it produces evidence in an un-
derstandable format for every decision it makes. We
validate the utility of scenarios and ScenarioNet on a di-
verse set of scene understanding tasks on several bench-
mark datasets.

1 Introduction
For many applications (e.g., robotics, human-machine teaming,
surveillance, and autonomous vehicles), an agent must reason
about the high-level content of real world scene images in order to
make rational, grounded decisions that can be trusted by humans.
It is often also necessary to have models that are able to be in-
terpreted by humans in order to further encourage trust and allow
humans to understand the failure modes of the autonomous agent.
For example, if a self-driving car makes an error, it is important to
know what caused the error to prevent future situations where sim-
ilar errors might arise. Recently, a lot of progress has been made
in constructing algorithms and systems that address fundamental
scene understanding tasks such as scene classification, object de-
tection, and semantic segmentation as well as more complex scene
understanding tasks such as visual question-answering, automatic
relationship extraction, scene graph generation, and learning how
to visually reason about objects in simple scenes (e.g., [Johnson et
al., 2016]). While existing methods for solving such tasks are im-
pressive, they often lack the interpretability and semantic ground-
ing needed to make them trustworthy for safety-critical tasks and
tasks involving human-machine teaming.

In this paper, we present a novel interpretable data-driven model
for scene understanding. Explainable machine learning models
rely on two properties: 1) features should be low-dimensional and
human-interpretable and 2) models should be simple (with few
parameters), easy for humans to inspect, and operate in a prin-
cipled, well-understood way. We introduce a low-dimensional,
semantically-grounded, object-based representation for scene un-
derstanding called the “scenario” which addresses the first prop-
erty. We then show how scenarios can be used to make convolu-
tional neural networks (CNNs) more transparent, thus addressing
the second property.

We introduce scenarios, an interpretable, data-driven represen-
tation for scene understanding. Scenarios are based on sets of fre-
quently co-occurring objects. Scenarios should satisfy a few key
properties:

1. Scenarios are composed of one or more objects.
2. The same object can appear in multiple scenarios, and this

should reflect the context in which the object appears, e.g.,
{keyboard, screen, mouse} and {remote control, screen, ca-
ble box} both contain the “screen” object, but in the first sce-
nario, the screen is a computer monitor, and in the second
scenario, it is a television screen.

3. Scenes can be decomposed as combinations of scenarios,
e.g., a bathroom scene instance might decompose into:
{shower, bathtub, shampoo} + {mirror, sink, toothbrush,
toothpaste} + {toilet, toilet paper}.

4. Scenarios are flexible and robust to missing objects. A sce-
nario can be present in a scene without all of its constituent
objects being present.

We propose Pseudo-Boolean Matrix Factorization (PBMF)
to identify scenarios from data. PBMF takes a binary Object-
Scene matrix and decomposes it into 1) a dictionary matrix where
each basis vector is a scenario and 2) an encoding matrix that ex-
presses a scene instance as a combination of scenarios. We inte-
grate PBMF into a novel convolutional neural network architec-
ture (CNN), the ScenarioNet.

ScenarioNet replaces the final convolutional layers in standard
CNNs with the scenario block (see Fig. 1) which consists of three
parts: 1) global pooling layers that identify the parts of an image
ScenarioNet attends to when recognizing whether each scenario
is present in an image, 2) layers that use a PBMF-based loss func-
tion to learn a dictionary of scenarios and predict the presence and
strength of each scenario for a given image, and 3) layers equiv-
alent to a multinomial logistic regression model that use scenar-
ios as low-dimensional features for predicting the scene category.
During training, ScenarioNet only requires information about the
presence (but not location) of objects in an image. For scene clas-
sification, class labels are also needed during training. During
testing, only images are given.

Using ScenarioNet, we can recover semantic information about
scene images at three levels of granularity: 1) scene categories, 2)

1



FAIM/FIX/IJCAI Workshop on Explainable Artificial Intelligence (XAI) 2018

Figure 1: The scenario block replaces the final fully connected layers of a standard CNN and consists of: 1) global pooling layers that identify which
parts of an image ScenarioNet attends to when recognizing whether a scenario is present in a given image, 2) layers that use a PBMF-based loss
function to finetune a dictionary of scenarios and predict the presence of each scenario for a given image, and 3) layers equivalent to multinomial
logistic regression that use scenarios as low-dimensional, interpretable features for scene classification.

scenarios, and 3) objects. This allows us to train a single Scenari-
oNet model capable of performing 1) scene classification, 2) sce-
nario recognition, 3) multi-object recognition, 4) content-based
scene image retrieval, and 5) content-based image comparison.

ScenarioNet has several advantages over other CNNs. It is com-
putationally efficient because it requires significantly fewer pa-
rameters than other CNNs in order to achieve similar performance
on benchmark tasks, and it is interpretable because it produces
semantically- and visually-grounded evidence when making de-
cisions. For example, for scene classification, predicted scenarios
are used as low-dimensional semantic features; humans can verify
the presence of each predicted scenario in an image by examining
the scenario-localizing attention maps produced by the network;
and humans can inspect how much influence each scenario exerts
when assigning a class. This helps us to understand how a network
arrives at specific decisions.

We evaluate the utility of ScenarioNet using the SUNRGBD
[Song et al., 2015], ADE20K [Zhou et al., 2017b], and MIT 67
Indoor Scenes [Quattoni and Torralba, 2009] datasets. We per-
form quantitative experiments on multi-object recognition, scene
classification, and content-based image retrieval. We also show
examples demonstrating the interpretability and expressiveness of
ScenarioNet.

2 Related Work
2.1 Learning Meaningful Groups of Objects
Discovering meaningful groups of objects is not a new idea. The
simplest object-based representations are those that utilize pair-
wise co-occurrence relationships between objects (e.g., [Rabi-
novich et al., 2007]). Scenarios go one step further by efficiently
learning groups of objects of varying size. Many works focus on
hierarchical models relating objects and scenes. [Feng and Bhanu,
2016] constructs a tree-based hierarchy of concepts based on ob-
ject co-occurrence graphs. Objects sharing an ancestor node can
be grouped into scene concepts, an idea similar to our scenarios.
Several issues exist with using a tree structure for specifying scene
concepts. To compute explicit scenarios, one must identify where
to cut the tree. Additionally, while individual concepts can belong
to multiple scene concepts by cutting the tree at different ancestor
nodes, it becomes hard to properly place objects in the hierarchy
that serve different functions within different groups, e.g., a screen
with a keyboard and mouse is different from a screen with a ca-
ble box and remote. Our scenarios address these issues and pro-
vide additional information, e.g., how important each object is to
a given scenario and how to decompose scene instances into com-
binations of scenarios. Other tree-based and hierarchical models

for scene understanding exist. [Choi et al., 2012] introduces a tree
structure where nodes represent objects and latent variables and
edges represent positive and negative correlations between nodes.
These trees implicitly capture scenarios while our work learns ex-
plicit scenarios. [Fan et al., 2008] exploit hierarchies of concepts
to build ontologies for content-based image retrieval. [Lan et al.,
2013] investigate context at three levels: individual objects, parts
of objects, and visual composites.

Other groups focus on using sets of objects to aid object de-
tection. [Li et al., 2012] discovers groups of objects of arbitrary
size, model these groups using deformable parts models, and di-
rectly detects these groups in images. [Cinbis and Sclaroff, 2012]
constructs classifiers that operate over sets of objects using object-
object and object-scene relations to re-score and remove noisy
detections. ScenarioNet differs from these methods because it
jointly learns to group objects and coarsely localize them in im-
ages.

2.2 Explainable Models for Visual Recognition
The AI community has placed greater importance on learning ex-
plainable models and making complex models more interpretable.
This is especially important for visual recognition tasks where
many state-of-the-art models rely on deep neural networks. Sev-
eral solutions have been proposed to solve this problem. [Ribeiro
et al., 2016] proposes a general framework for making complex
models interpretable by looking at local linear approximations of
the model’s behaviour. Other works focus on generating visual
explanations of CNN features, e.g., [Oquab et al., 2015], [Zhou et
al., 2016], [Selvaraju et al., 2017], and [Lengerich et al., 2017],
but these methods do not generate semantic explanations. [Hen-
dricks et al., 2016] trains a CNN to recognize objects and then
trains an RNN to generate natural language explanations for the
recognition decisions. They extend the system to work with vi-
sual question answering systems and also generate attention maps
[Park et al., 2016]. ScenarioNet generates less sophisticated, yet
still human-interpretable semantic descriptions but doesn’t require
training language models which require large databases of image-
caption pairs.

3 Proposed Method
3.1 Identifying Scenarios from Data: Pseudo-Boolean

Matrix Factorization
We begin our discussion of the technical details of our model by
asking: how do we identify which sets of objects naturally group
together to form scenarios? We start with a training set of scene in-
stances and a finite set of predetermined objects. We have ground-
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truth annotations for the presence (or lack thereof) of every object
in every scene instance given by either humans or object detectors.
For each training instance, we create a vector of object presences
where each element corresponds to a specific object, and the ele-
ment is 1 if the object is present and 0 otherwise. We concatenate
these vectors to form a matrix A where each row corresponds to a
specific object and each column is a training instance. After spec-
ifying the number of desired scenarios k (which can be estimated
from the data), we decompose A into two smaller approximately
binary matrices: a dictionary matrix W representing a set of sce-
narios and an encoding matrixH that expresses scene instances as
combinations of scenarios. Each column of W represents a sin-
gle scenario and each row represents an object. If element Wij

is 0 or very small, object i is not present in scenario j. As Wij

approaches 1, object i exerts more influence on scenario j. Each
column of H represents a specific scene instance and each row
represents a specific scenario. If element Hij is 0 or very small,
then scenario i is not present in scene instance j. As Hij ap-
proaches 1, scenario i exerts more influence on scene instance j.

Formulation of PBMF
We propose identifying scenarios using an approximation of
Boolean matrix factorization (BMF) [Miettinen et al., 2008]. In
BMF, A, W , and H are binary matrices and the matrix multipli-
cation is Boolean (denoted as ◦):

min
W,H
||(A−W ◦H)||1 s.t. W ∈ {0, 1}, H ∈ {0, 1} (1)

BMF is well-suited for identifying scenarios from data because:
1) it efficiently compresses and preserves information using low-
dimensional representations; 2) the basis vectors are easy to inter-
pret; 3) it discovers meaningful interactions between objects; and
4) the encoding vectors are sparse, so each instance is expressed
by a small subset of scenarios.

We use a gradient descent-based approach to solve the opti-
mization problem. The formulation in Eq. 1 is not continuous,
so we approximate Boolean matrix multiplication as W ◦ H ≈
min(WH, 1) and relax the constraints to lie in [0, 1]. Using
min(WH, 1) results in cases where the gradient vanishes, so we
further approximate min(WH, 1) ≈ min(WH, 1 + 0.01WH).
Our basic Pseudo-Boolean Matrix Factorization (PBMF) for-
mulation becomes:

min
W,H
||(A−min(WH, 1 + 0.01WH))||2F s.t. W ∈ [0, 1], H ∈ [0, 1] (2)

(Eq. 2) is still not perfectly suited for discovering scenarios. We
add three additional terms: an orthogonality penalty to encourage
diversity between scenarios and sparse penalties on the scenario
dictionary and encoding to push W and H closer to binary ma-
trices and improve interpretability. We introduce a weight matrix
Ω that decreases the importance of common objects and increases
the importance of rare objects during the factorization.

min
W,H
||Ω • (A−min(WH, 1 + 0.01WH))||2F

+ α1||Wᵀ
W − diag(Wᵀ

W )||2F + α2||W ||1 + α3||H||1
s.t. W ∈ [0, 1], H ∈ [0, 1],

Ωij = max

(
Aij ∗

(
1 + log

(
Ninstances

Nobjects

))
, 1

) (3)

• denotes element-wise matrix multiplication. The αs represent
tradeoff parameters.

3.2 ScenarioNet: Updating and Recognizing Scenarios
from Visual Data

So far we’ve assumed we have perfect knowledge of all ground-
truth object data. This means that if we’re given a previously un-

seen scene instance, we can hold the scenario matrix constant and
directly solve for the encoding matrix. In practice, we’ll not have
object data at test time. We need to learn how to recover the sce-
nario encoding for a specific scene instance entirely from visual
data. To do this, we integrate PBMF with CNNs. We propose Sce-
narioNet, a CNN that learns to identify and recognize scenarios
from real-world visual data, performs scene classification using
the predicted scenario encoding, and generates attention maps that
highlight the regions the net focuses on when predicting whether a
specific scenario is present in a given image. ScenarioNet learns
to predict an estimated scenario encoding matrix Ĥ and fine-
tunes the dictionary W to adapt to the noisier Ĥ . W also in-
corporates feedback from the scene classification task to im-
prove discriminability. The key architectural difference between
ScenarioNet and other CNNs is the scenario block (see Fig. 1)
which replaces the final fully connected layers used for classifica-
tion in standard CNNs.

We now describe the rationale behind the scenario block. The
final convolutional layers of a neural net such VGGNet are fed
into a global average pooling (GAP) layer. This layer in combi-
nation with the class activation mapping technique [Zhou et al.,
2016] allows us to identify which parts of an image ScenarioNet
attends to when determining if a scenario is present in the image.
The output of the GAP layer is fed into a fully connected layer
followed by a sigmoid transformation layer. The sigmoid layer
outputs the scenario encoding vector and enforces each element
of the vector is between 0 and 1. This vector tells us how present
each scenario is in a given image. The scenario encoding layer
feeds into a PBMF loss layer which finetunes the scenario dictio-
nary and provides feedback to the network. The scenario encoding
is also fed into a sequence of layers equivalent to a multinomial
logistic regression model that uses scenarios as low-dimensional,
interpretable features for scene classification.

Training ScenarioNet

During training, ScenarioNet only requires information about the
presence (not location) of objects in an image. For scene classifi-
cation, class labels are also needed during training. During testing,
only images are given. First, the scenario dictionary is learned us-
ing ground-truth object presence data. Then, the net is trained to
predict the scenario encodings while the dictionary is finetuned.
Next, we train a softmax classifier for scene classification on top
of a frozen net. Finally, we jointly finetune the net for scenario
recognition and scene classification while once again finetuning
the dictionary. It is useful to finetune only the last few layers
of networks that have been previously trained for scene classifi-
cation (e.g., on the Places dataset [Zhou et al., 2017a]) since sce-
nario recognition and scene classification are closely related. Each
step of the finetuning process takes between 10 and 20 epoches.
To finetune the dictionary while training the net, we use alter-
nating projected gradient descent. During training, we hold the
scenario dictionary constant and finetune the network using back-
propagation in mini-batches to predict the encoding coefficients.
After every four iterations, we hold the network constant and per-
form a full pass through the data to reconstruct Ĥ and finetune
the scenario dictionary W using projected gradient descent. Al-
ternatively, W can be efficiently finetuned using mini-batches by
noting that the gradient of the PBMF loss w.r.t. W is able to be
decomposed as a sum of gradients over sub-batches of Ĥ; thus,
we never have to compute the full Ĥ at any point in time.
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Generating Evidence: Interpreting the Output of
ScenarioNet
We now discuss how to interpret the output of ScenarioNet and
by doing so understand how ScenarioNet makes interpretable de-
cisions. Given an input image, ScenarioNet provides us with 1)
a probabilistic scene class assignment, 2) a vector of scenario en-
coding coefficients, 3) the dictionary of scenarios, and 4) activa-
tion maps that can be used to localize the discriminative parts of
each scenario. In Fig. 2, we show an example of decomposing
a scene instance into its top-3 strongest detected scenarios using
ScenarioNet. We see that ScenarioNet correctly predicts with high
confidence that the scene category is “dining room”. The top-3
scenarios support this: one focuses on dining areas, one on kitchen
appliances, and one on decorative flowers. The encoding coeffi-
cient denotes the strength of each scenario. Note that all of the
encoding coefficients are close to one since these are the strongest
detected scenarios. As this coefficient decreases, the scenarios be-
come less present. Encoding coefficients tend to cluster around 0
and 1. Recall that ScenarioNet uses scenarios as features for scene
classification. We can define a scenario’s influence score for a spe-
cific class to be the corresponding weight in the multinomial lo-
gistic regression model. If the influence is a large positive number,
the scenario provides strong evidence for the specified class. If it
is a large negative number, the scenario is strong evidence against
a specific class. For this image, scenario 1 is very indicative of the
scene class, while scenarios 2 and 3 are weakly indicative. We can
also see how much influence each object exerts on each scenario.
For example, in scenario 1, the “chandelier” and “chair” objects
exert more influence when defining the scenario than the “buffet
counter” object. By examining the scenario activation maps, we
see that each predicted scenario is present and net attends to re-
gions of the image containing objects present in the scenarios.

True Class: Dining Room, Predicted Class: Dining Room, Confidence: 0.99

Scenario #1 (Dining Area)
Encoding Coeff: 0.99
Influence: +5.65
• Chandelier: 1.00
• Chair: 0.99
• Buffet Counter: 0.53

Scenario #2 (Appliances)
Encoding Coeff: 0.97
Influence: +1.03
• Countertop: 1.00
• Stove: 1.00
• Oven: 1.00
• Fridge: 0.99

• Microwave: 0.99
• Exhaust Hood: 0.95
• Button Panel: 0.90

Scenario #3 (Decorative 
Flowers)
Encoding Coeff: 0.97
Influence: +1.28
• Flower: 1.00
• Vase: 1.00

Figure 2: We demonstrate the explainability of ScenarioNet. We show
the top-3 predicted scenarios for a dining room scene along with the cor-
responding activation maps. Please view in color.

Efficiency
Interestingly, our network has substantially fewer parameters than
equivalent base architectures. For example, the final convolutional
layers of VGG-16 typically consist of a 4096-by-4096 matrix fol-
lowed by a 4096-by-#classes matrix for a total of 4096(4096 +
#classes) parameters. Our net uses a 512-by-#scenarios ma-
trix followed by a #scenarios-by-#classes matrix for a total of
#scenarios(512 + #classes) parameters. Since #scenarios <<
4096 (we use between k = 25 and k = 70 scenarios in our ex-
periments), this results in over a 100x reduction in the number
of parameters in the final layers, reduces the memory footprint of
the total net by a factor of ˜10, and the net is ˜15% faster during
testing.

4 Experimental Results and Analysis
In this section, we evaluate the reconstruction ability of PBMF,
and also analyze the performance of ScenarioNet on three com-
mon scene understanding tasks: multi-object recognition, scene
classification, and content-based scene image retrieval. We first
explain the general experimental setup.

4.1 Experimental Setup
We conduct experiments on the SUNRGBD [Song et al., 2015],
ADE20K [Zhou et al., 2017b], and MIT 67 Indoor Scenes [Quat-
toni and Torralba, 2009] datasets. We divide each dataset into
separate training and test sets using the recommended splits for
the SUNRGBD and MIT67 datasets and a random split for the
ADE20K dataset. For each dataset, we only consider objects that
appear in at least 1% of the training instances resulting in 55
objects for SUNRGBD, 193 for ADE20K, and 166 for MIT67.
We use random cropping and horizontal mirroring to augment the
training examples. For the SUNRGBD dataset, we use the 15
most frequently occurring scene classes, reserving 100 samples
per class for test data, and generating 1000 samples per class for
the training data. For the ADE20K dataset, we use the 31 most
frequently occurring scene classes, reserving 25 samples per class
for test data, and generating 500 samples per class for training
data. For the MIT67 dataset, we use 67 scene classes, reserv-
ing 20 samples per class for test data, and generating 800 sam-
ples per class for training data. We learn 25 scenarios for SUN-
RGBD, 70 for ADE20K, and 70 for MIT67. We use VGG-16 as
our base CNN architecture, replacing the final fully-connected
layers with the scenario block. For the MIT dataset, we only
have object annotation data for about one-fifth of the train-
ing data, the amount of annotated data is very imbalanced
between classes, and the annotations are much noisier than
for the other datasets. These properties make learning sce-
narios on the MIT dataset much more difficult than for the
other datasets, but we are still able to achieve relatively good
results. For this dataset, we learn the scenarios using the anno-
tated portion of the training set and train a scene classifier on top
of these scenarios for the full training set.

4.2 Reconstruction Error of PBMF
PBMF is a lossy factorization. We want to determine how much
information about object presence is lost as a result of the de-
composition. For this experiment, we assume perfect, ground-
truth knowledge of the object presences. We consider three
cases of PBMF: PBMF-Basic (Eq. 2), PBMF-Full (Eq. 3) with
uniform weighting, and PBMF-Full using the proposed weight
matrix. We compare to the SVD, NNSVD [Ding et al., 2006],
NMF [Paatero and Tapper, 1994], Greedy Boolean MF [Mietti-
nen et al., 2008], and Binary MF [Zhang et al., 2007] as well as
all-zeros and all-mean values baselines. We initialize the basis
and encoding matrices using a procedure similar to [Zhang et al.,
2007]. Results are plotted in Fig. 3. PBMF-Basic works excep-
tionally well for reconstruction, generally losing to the much less
constrained SVD. However, if we only focus on optimizing re-
construction error, we will overly prioritize common objects and
might learn bases that lack diversity. As Fig. 3 demonstrates,
adding orthogonality constraints and reweighing rare classes im-
pacts the reconstruction error; however, we found adding these
constraints results in dictionaries that are better suited for higher-
level tasks such as scene classification and image retrieval.
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Figure 3: Reconstruction error between a recovered and groundtruth ma-
trix as the dimensionality of the reduced representation is varied

4.3 Multi-Object Recognition from Scene Images
In addition to noise from the lossy PBMF, we also need to con-
sider noise resulting from mapping visual data to objects. We con-
sider the task of tagging images with their constituent objects. We
use ScenarioNet to predict the scenario encoding matrix Ĥ and
try to recover an approximate hypothesis about which objects are
present in a scene by recovering the object-scene data matrix A
using the learned scenario dictionary W and predicted encoding
matrix Ĥ: A ≈ WĤ . This recovery gives us a list of the pos-
sible objects in a scene. We compare against a finetuned object
detector [Redmon and Farhadi, 2017] and VGG-16 finetuned for
multi-object recognition. We use the macro (averaged) area under
the precision-recall curve as our metric since the data is very im-
balanced for rare objects. In Table 1, we show results for when
we consider objects that appear in at least 1% of data (very rare)
and 5% of data (rare) to show how imbalance affects both meth-
ods. The object detector works well when we have large, complete
objects, but ADE20K tends to contain smaller objects and parts-
of-objects, so the VGG-based nets outperform the object detector
on this data, and perform worse on SUNRGBD. Likewise, there
is greater labor cost associated with training the YOLO net be-
cause it requires bounding box information, which the other meth-
ods do not. VGG-Objects and ScenarioNet perform similarly de-
spite PBMF being lossy and the output of ScenarioNet being 2-3
times smaller in dimensionality. Interestingly, ScenarioNet per-
forms better than VGG-Objects on the SUNRGBD-5% task. We
believe ScenarioNet performs well because it excels at capturing
context and because it is easier to recognize scenarios (defined
by a few key objects) than individual objects. ScenarioNet has
several advantages over individual object-based methods: it finds
relationships between objects and captures global scene informa-
tion.

4.4 Scene Classification
We now consider the task of scene classification where we care
more about global scene information than local objects. In the fol-
lowing sections, we compare ScenarioNet to other object-based

SUNRGBD ADE20K

Method 1%
(55 Objs)

5%
(16 Objs)

1%
(193 Objs)

5%
(50 Objs)

Random 0.066 0.152 0.070 0.171
Object Detection (YOLOv2) 0.442 0.633 0.379 0.587
VGG-Objects 0.369 0.574 0.475 0.696
ScenarioNet 0.356 0.585 0.452 0.683

Table 1: Macro-AUPRC for multi-object recognition

representations, baseline CNNs, compressed CNNs, and other
mid-level features. Results are reported in Table 2. For experi-
ments not involving a CNN, we train a logistic regression model
on top of the given features.

Method Dimens. SUNRGBD ADE20K MIT
Object-Based Representations

Object Bank + PCA 8000 0.296 0.511 0.39
Object Detection (YOLOv2) 55/193/166 0.399 0.639 0.517
VGG-Objects 55/193/166 0.483 0.726 0.6187

Baseline CNNs
AlexNet 4096 0.469 0.786 0.687
GoogLeNet 2048 0.541 0.796 0.737
VGG-16 4096 0.531 0.809 0.792
ResNet-50 1024 0.509 0.777 0.687

Dimensionality-Reducing and Lower-Parameter CNNs
VGG-Reduced 25/70/70 0.458 0.787 0.722
VGG-GAP 512 0.486 0.767 0.779
VGG-GMP 512 0.463 0.786 0.723

Attribute-Based Representations
SUN-Attribute 102 0.429 0.705 0.655
Classemes 2659 0.309 0.581 0.448
Meta-Classes 15232 0.36 0.635 0.525

Learned Mid-Level Visual Representations
Mid-Level Patches 14070 N/A N/A 0.381*
Mid-Level Vis. Elem. 67000 N/A N/A 0.64*
DPM N/A N/A N/A 0.304*
RBoW N/A N/A N/A 0.379*
BoP 3350 N/A N/A 0.461*
Discriminative Parts 4926 N/A N/A 0.514*

Proposed Model
ScenarioNet 25/70/70 0.520 0.794 0.725

Table 2: Scene classification accuracy; * denotes reported results

Comparison to Other Object-Based Representations
We first consider object-based representations. These include the
same models as in Sec. 4.3 (using the object probabilities as fea-
tures) and also Object Bank features [Li et al., 2010] compressed
to 8000 dimensions using PCA. ScenarioNet is better than all
other object-based representations for scene classification despite
its lower dimensionality. This suggests that scenarios are bet-
ter at capturing global scene information than individual object-
based approaches. This is partly because ScenarioNet is trained to
jointly recognize objects and scenes, a key difference to the other
methods.

Comparison to Baseline CNNs
CNNs are currently a very popular method for scene classifica-
tion. We finetune AlexNet [Krizhevsky et al., 2012], GoogLeNet
[Szegedy et al., 2015], and VGG-16 [Simonyan and Zisserman,
2014] models that have been pre-trained on the Places dataset
[Zhou et al., 2017a] as well as a ResNet-50 CNN [He et al., 2016]
pre-trained on ImageNet [Deng et al., 2009]. Since ScenarioNet
extends VGG-16, we focus on how these two nets compare. Sce-
narioNet tends to slightly underperform VGG-16 by about 1-2%.
The most significant drop in performance is on the MIT dataset,
but ScenarioNet is forced to learn scenarios on a smaller, noisier,
and imbalanced subset of the training data (see Sec. 4.1). Sce-
narioNet has several advantages over VGG-16; it has fewer pa-
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rameters, has the ability to explain its decisions, and can produce
scenario encodings which are useful for tasks beyond scene clas-
sification. In the next section, we see that ScenarioNet generally
performs better than VGG-16 nets that compress the feature space
to the same dimensionality as ScenarioNet.

Comparison to Dim-Reducing and Low-Param. CNNs
We modify VGG-16 so the output of the final feature layer is
the same dimensionality as our scenario-based representation (by
shrinking the FC layers). ScenarioNet matches or outperforms the
compressed VGG-16 net in all cases. This might be because Sce-
narioNet constrains the intermediate representation to have high-
level meaning while the compressed-VGG net lacks such guid-
ance, making it susceptible to finding worse local minimum. We
also compare ScenarioNet to VGG nets which replace the dou-
ble fully-connected layers with global average pooling (GAP) and
global max pooling (GMP) layers. These nets contain roughly the
same number of parameters as ScenarioNet. In five of six cases,
we outperform or match the low-parameter nets.

Comparison to Mid-Level Representations
Finally, we compare against three other types of mid-level repre-
sentations: attributes, mid-level visual patches, and parts-based
models. Attributes are high-level semantic properties shared
between multiple classes [Farhadi et al., 2009]. We consider
three attribute-like representations: SUN Attributes [Patterson
and Hays, 2012], Classemes [Torresani et al., 2010], and Meta-
Classes [Bergamo and Torresani, 2012]. Several representations
consider visually-distinct, meaningful mid-level patches [Singh et
al., 2012] and mid-level visual elements [Doersch et al., 2013].
Finally, we consider parts-based models including the deformable
parts model (DPM) [Pandey and Lazebnik, 2011], reconfigurable
bags-of-words (RBoW) [Parizi et al., 2012], bags-of-parts (BoP)
[Juneja et al., 2013], and discriminative parts [Sun and Ponce,
2013]. We outperform all of these methods, but it should be noted
that for the non-attribute-based features, we use the reported re-
sults on the MIT dataset because the code to generate these fea-
tures is either unavailable or prohibitively expensive to run on our
machines. It should also be noted that these methods pre-date
CNNs, and not all of the reported results include the use of train-
ing data augmentation while ScenarioNet does.

4.5 Content-Based Querying and Comparison
ScenarioNet is useful for content-based scene image retrieval be-
cause it can retrieve images satisfying a set of high-level crite-
ria based on the scene category, scenarios, and objects present
in an image (e.g., find images of scene category A OR B THAT
CONTAIN scenarios X AND Y but EXCLUDE object Z). Often,
we want to query for broad concepts and not individual objects.
Scenarios offer a nice compromise between global (scene cate-
gory) and local (object) information. It is easy for humans to ex-
amine the scenario dictionary and form complex queries because
scenarios are low-dimensional and interpretable. Scenarios can
also act as an efficient hashing mechanism because they are low-
dimensional and approximately binary, so memory requirements
are low and retrieval can be performed in an efficient manner.

In Table 3, we evaluate ScenarioNet for complex content-based
scene image retrieval. We form 500 random queries, each con-
sisting of a desired scene class, two objects that should be present,
and one object that should be absent but frequently co-occurs with
the other two objects, i.e. (SC ∩ O1 ∩ O2 ∩ ¬O3). We do not
consider querying against scenarios for this task because no other

method is capable of recognizing scenarios. We measure the rel-
evance of a returned image as the proportion of query terms that
are satisifed. We compute the normalized discounted cumulative
gain for the top-5 result images for each query. ScenarioNet is
very competive with the other methods, matching VGG-Objects
for the best performance on ADE20K, and coming very close to
both baselines on SUNRGBD.

Method SUNRGBD ADE20K
Random 0.302 0.313
Object Detection (YOLOv2) 0.679 0.760
VGG-Objects 0.686 0.799
ScenarioNet 0.652 0.799

Table 3: NDCG@5 for retrieving images of a given class containing 2
specific objects and not containing a third highly-correlated object

Query: How are the Images Similar?
Result: 
-Both images are “park” scenes.
-They share the following scenarios: 
(person) and (grass, path, earth, tree)

Query: How do the Images Differ?
Result: 
-Image 1 contains the scenario (head, 
arms, legs, bag)
-Image 2 contains the scenario 
(building, lamp, road, sidewalk, 
window)

Figure 4: Using ScenarioNet to find high-level similarities and differ-
ences between two images.

ScenarioNet is also useful for generating a quick overview of
the similarities and differences between two scene images with-
out relying on (often unnecessary) information about individual
objects. Fig. 4 shows an example.

5 Conclusions

We introduced scenarios as a new way of representing scenes.
The scenario is a simple data-driven representation based on sets
of frequently co-occurring objects. We provided a method for
learning scenarios from data by combining PBMF with CNNs
to form the ScenarioNet. Our experiments showed that a sin-
gle ScenarioNet model can perform scene classification, scenario
recognition, multi-object recognition, content-based scene image
retrieval, and content-based image comparison with performance
comparable to or better than existing models. We showed that
scenarios have several advantages over individual object-based
representations; specifically, they are lower-dimensional, capture
global scene context, and find relationships between objects. We
also discussed and demonstrated the computational efficiency and
interpretability of ScenarioNet compared to traditional CNNs. We
believe ScenarioNet provides a strong first step towards construct-
ing explainable and trustworthy models for safety-critical appli-
cations related to scene understanding (e.g., robotics, human-
machine teaming, surveillance, and self-driving cars). However,
much work remains, including evaluating the utility of scenarios
in human studies and figuring out how ScenarioNet can be used in
dynamic and interactive settings.

6



FAIM/FIX/IJCAI Workshop on Explainable Artificial Intelligence (XAI) 2018

Acknowledgments
This work is partly supported by the Air Force Office of Scientific
Research (AFOSR) under the Dynamic Data-Driven Application
Systems (DDDAS) program. This material is based upon work
supported by the National Science Foundation Graduate Research
Fellowship under Grant No. DGE-1433187.

References
[Bergamo and Torresani, 2012] Alessandro Bergamo and Lorenzo

Torresani. Meta-class features for large-scale object categorization
on a budget. In CVPR, 2012.

[Choi et al., 2012] Myung Jin Choi, Antonio Torralba, and Alan S
Willsky. A tree-based context model for object recognition. IEEE
TPAMI, 2012.

[Cinbis and Sclaroff, 2012] Ramazan Cinbis and Stan Sclaroff. Con-
textual object detection using set-based classification. ECCV, 2012.

[Deng et al., 2009] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li,
Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR. IEEE, 2009.

[Ding et al., 2006] Chris Ding, Tao Li, Wei Peng, and Haesun Park.
Orthogonal nonnegative matrix t-factorizations for clustering. In
SIGKDD, 2006.

[Doersch et al., 2013] Carl Doersch, Abhinav Gupta, and Alexei A
Efros. Mid-level visual element discovery as discriminative mode
seeking. In NIPS, 2013.

[Fan et al., 2008] Jianping Fan, Yuli Gao, and Hangzai Luo. Integrat-
ing concept ontology and multitask learning to achieve more effec-
tive classifier training for multilevel image annotation. IEEE TIP,
2008.

[Farhadi et al., 2009] Ali Farhadi, Ian Endres, Derek Hoiem, and
David Forsyth. Describing objects by their attributes. In CVPR,
2009.

[Feng and Bhanu, 2016] Linan Feng and Bir Bhanu. Semantic con-
cept co-occurrence patterns for image annotation and retrieval.
IEEE TPAMI, 2016.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Deep residual learning for image recognition. In CVPR,
2016.

[Hendricks et al., 2016] Lisa Anne Hendricks, Zeynep Akata, Marcus
Rohrbach, Jeff Donahue, Bernt Schiele, and Trevor Darrell. Gener-
ating visual explanations. In ECCV, 2016.

[Johnson et al., 2016] Justin Johnson, Bharath Hariharan, Laurens
van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick.
Clevr: A diagnostic dataset for compositional language and elemen-
tary visual reasoning. arXiv, 2016.

[Juneja et al., 2013] Mayank Juneja, Andrea Vedaldi, CV Jawahar,
and Andrew Zisserman. Blocks that shout: Distinctive parts for
scene classification. In CVPR, 2013.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever, and Geof-
frey E Hinton. Imagenet classification with deep convolutional neu-
ral networks. In NIPS, 2012.

[Lan et al., 2013] Tian Lan, Michalis Raptis, Leonid Sigal, and Greg
Mori. From subcategories to visual composites. In ICCV, 2013.

[Lengerich et al., 2017] Benjamin J Lengerich, Sandeep Konam,
Eric P Xing, Stephanie Rosenthal, and Manuela Veloso. Visual ex-
planations for convolutional neural networks via input resampling.
ICML Workshop on Visualization in Deep Learning, 2017.

[Li et al., 2010] Li-Jia Li, Hao Su, Li Fei-Fei, and Eric P Xing. Object
bank: A high-level image representation for scene classification. In
NIPS, 2010.

[Li et al., 2012] Congcong Li, Devi Parikh, and Tsuhan Chen. Auto-
matic discovery of groups of objects for scene understanding. In
CVPR, 2012.

[Miettinen et al., 2008] Pauli Miettinen, Taneli Mielikäinen, Aristides
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