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Motivation 
•  Scenarios are sets of objects that commonly co-exist. 
•  Objects can belong to multiple scenarios and a scenario can exist in a scene instance 

without all of its member objects being present. 
•  Scenes can be expressed as combinations of scenarios. 
•  Scenarios are closely related to scene category. 
•  Scenarios can be learned from data using sparse non-negative matrix factorization [2][5]. 

•  MLCFs are constructed 
in a top-down manner, 
starting at the scene-
category level and 
ending at the object-
localization level. 

•  At each node in a MLC 
tree, we learn a splitting 
function by clustering a 
set of scene instances 
into two groups based on 
their labels and learning 
a separating hyperplane 
based on global image 
features. 

•  When the level of context 
switches, we identify the 
dominant “contextual 
objects” and restrict what 
labels are used when 
learning the splitting 
function for the 
subsequent level of 
context. 

•  Probabilities for every 
label in every level of 
context is stored at the 
leaf node. 

•  At test time, we extract 
global features and 
traverse the tree. 

Example of MLCF for Retrieving Semantically and Spatially 
Similar Scene Images 

Example of MLCF for Contextual Priming 

•  We wish to jointly solve several problems in scene understanding: 
scene classification, scenario presence recognition, object 
presence recognition, and contextual priming. 

•  Learning joint models for scene understanding is an active research 
problem, e.g. [4], [7], and [9]. 

•  Existing methods typically use graphical models that operate on 
local image features, leading to good results at potentially high 
computational cost. 

•  We propose a model that is computationally efficient during training 
and test time. 

•  We introduce Multi-Level Context Forests (MLCF), an extension 
of structured forests [1] to handle hierarchically-structured multi-
label problems. 

•  Our MLCF model uses global image features (e.g. based on 
PlaceNet [10]) to make predictions about the content of scene 
images. 

•  We also introduce the concept of scenarios, sets of objects that 
commonly coexist, e.g. {toilet, shower, mirror, sink}. 

•  Scenes can be expressed as combinations of scenarios. 
•  Scenarios are flexible: objects can belong to multiple scenarios and 

a scenario can be present in a scene even if only a portion of its 
member objects are present. 

•  MLCFs exploit context by utilizing relationships within and between 
various levels of context. 

•  We examine a four-level contextual hierarchy: scenes à scenarios 
à objects à object organization/location. 

•  During training, we can use information about higher levels of 
context to restrict what information we need to examine when 
learning about lower levels of context. 

Recogni:on:	
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  F-­‐Measure	
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Method	
   Scenarios	
   Objects	
   Scenarios	
   Objects	
   3	
  Scenes	
   16	
  Scenes	
  

1-­‐NN	
   0.464	
   0.425	
   0.494	
   0.476	
   0.501	
   0.126	
  

5-­‐NN	
   0.451	
   0.495	
   0.476	
   0.503	
   0.956	
   0.711	
  
Linear	
  SVM	
  	
  

(Individual	
  Classifiers)	
   0.391	
   0.471	
   0.390	
   0.441	
   0.957	
   0.605	
  

Linear	
  SVM	
  	
  
(Individual	
  Classifiers,	
  

Uniform	
  Priors)	
  
0.509	
   0.541	
   0.548	
   0.570	
   0.952	
   0.708	
  

ML-­‐5NN	
   0.474	
   0.520	
   0.505	
   0.526	
   0.958	
   0.743	
  
ML-­‐Naïve	
  Bayes	
   0.208	
   0.395	
   0.155	
   0.285	
   0.904	
   0.000	
  

BPMLL	
   0.412	
   0.524	
   0.439	
   0.528	
   0.947	
   0.589	
  

MLCF	
   0.506	
   0.562	
   0.513	
   0.571	
   0.956	
   0.714	
  

Examples of Scenarios 

Scene Classification Using Scenarios Scenario Recognition Using Visual Features 

Localiza:on	
  
PASCAL	
  Context	
   SUN2012	
  

Method	
   IOU	
   Recall	
   Explored	
   IOU	
   Recall	
   Explored	
  
1-­‐NN:	
  SemanJc	
   0.331	
   0.390	
   0.131	
   0.307	
   0.336	
   0.113	
  
5-­‐NN:	
  SemanJc	
   0.386	
   0.538	
   0.202	
   0.380	
   0.519	
   0.176	
  
1-­‐NN:	
  PlaceNet	
   0.188	
   0.240	
   0.108	
   0.190	
   0.238	
   0.108	
  
5-­‐NN:	
  PlaceNet	
   0.295	
   0.543	
   0.274	
   0.305	
   0.565	
   0.256	
  

Average:	
  SemanJc	
   0.315	
   0.851	
   0.501	
   0.308	
   0.883	
   0.457	
  
MLCF:	
  PlaceNet	
   0.330	
   0.798	
   0.375	
   0.333	
   0.845	
   0.398	
  


